The purpose of this study was to examine the effect of DHEA (Dehydroepiandrosterone) on muscle weight and Type I and II fiber cross-sectional area of affected and unaffected hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury.
Neuropathic pain was induced by ligation and cutting of the left L5 spinal nerve. Adult male Sprague-Dawley rats were randomly assigned to one of two groups: The DHEA group (n=10) had DHEA injections daily for 14 days, and the Vehicle group (n=10) had vehicle injections daily for 14 days. Withdrawal threshold, body weight, food intake and activity were measured every day. At 15 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles were dissected from the both hindlimbs. Body weight, food intake, activity, muscle weight and Type I, II fiber cross-sectional area of the dissected muscles were measured.
The DHEA group showed significant increases (
DHEA administration for 14 days attenuates unaffected plantaris and gastrocnemius muscle atrophy.
Citations
The purpose of this study was to determine the effect of Dehydroepiandrosterone (DHEA) administration alone or exercise combined with DHEA before steroid treatment on rat hindlimb muscles.
Male Sprague-Dawley rats were assigned to one of three groups: a steroid group (S, n=10) that had no treatment for 7 days before steroid treatment; a DHEA-steroid group (DS, n=8) that had 0.34 mmol/kg/day DHEA injection once a day for 7 days before steroid treatment and an exercise+DHEA-steroid group (EDS, n=9) that ran on the treadmill combined with 0.34 mmol/kg/day DHEA injection for 7 days before steroid treatment. At 15 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles were dissected. Body weight, food intake, muscle weight, myofibillar protein content and cross-sectional area of the dissected muscles were determined.
The DS group showed significant increases (
Exercise combined with DHEA administration before steroid treatment prevents steroid induced muscle atrophy, with exercise combined with DHEA administration being more effective than DHEA administration alone in preventing muscle atrophy.
Citations