Skip Navigation
Skip to contents

J Korean Acad Nurs : Journal of Korean Academy of Nursing

OPEN ACCESS

Articles

Page Path
HOME > J Korean Acad Nurs > Volume 44(3); 2014 > Article
Original Article
Implementation of Ontology-based Clinical Decision Support System for Management of Interactions Between Antihypertensive Drugs and Diet
Jeong-Eun Park, Hwa-Sun Kim, Min-Jung Chang, Hae-Sook Hong
Journal of Korean Academy of Nursing 2014;44(3):294-304.
DOI: https://doi.org/10.4040/jkan.2014.44.3.294
Published online: June 30, 2014

1College of Nursing, Kyungpook National University, Daegu, Korea.

2Department of Medical Information Technology, Daegu Haany University, Daegu, Korea.

3Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Seoul, Korea.

Address reprint requests to: Hong, Hae-Sook. College of Nursing, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 700-422, Korea. Tel: +82-53-420-4932, Fax: +82-53-421-2758, hshong@knu.ac.kr
• Received: March 3, 2014   • Revised: March 17, 2014   • Accepted: May 9, 2014

© 2014 Korean Society of Nursing Science

This is an Open Access article distributed under the terms of the Creative Commons Attribution NoDerivs License. (http://creativecommons.org/licenses/by-nd/4.0/) If the original work is properly cited and retained without any modification or reproduction, it can be used and re-distributed in any format and medium.

  • 12 Views
  • 0 Download
prev next
  • Purpose
    The influence of dietary composition on blood pressure is an important subject in healthcare. Interactions between antihypertensive drugs and diet (IBADD) is the most important factor in the management of hypertension. It is therefore essential to support healthcare providers' decision making role in active and continuous interaction control in hypertension management. The aim of this study was to implement an ontology-based clinical decision support system (CDSS) for IBADD management (IBADDM). We considered the concepts of antihypertensive drugs and foods, and focused on the interchangeability between the database and the CDSS when providing tailored information.
  • Methods
    An ontology-based CDSS for IBADDM was implemented in eight phases: (1) determining the domain and scope of ontology, (2) reviewing existing ontology, (3) extracting and defining the concepts, (4) assigning relationships between concepts, (5) creating a conceptual map with CmapTools, (6) selecting upper ontology, (7) formally representing the ontology with Protégé (ver.4.3), (8) implementing an ontology-based CDSS as a JAVA prototype application.
  • Results
    We extracted 5,926 concepts, 15 properties, and formally represented them using Protégé. An ontology-based CDSS for IBADDM was implemented and the evaluation score was 4.60 out of 5.
  • Conclusion
    We endeavored to map functions of a CDSS and implement an ontology-based CDSS for IBADDM.
  • 1. Ng KH, Stanley AG, Williams B. Hypertension. Medicine. 2010;38(8):403–408. http://dx.doi.org/10.1016/j.mpmed.2010.05.001Article
  • 2. Walsh JM, McDonald KM, Shojania KG, Sundaram V, Nayak S, Lewis R, et al. Quality improvement strategies for hypertension management: A systematic review. Med Care. 2006;44(7):646–657. http://dx.doi.org/10.1097/01.mlr.0000220260.30768.32PubMed
  • 3. Jáuregui-Garrido B, Jáuregui-Lobera I. Interactions between antihypertensive drugs and food. Nutr Hosp. 2012;27(6):1866–1875. http://dx.doi.org/10.3305/nh.2012.27.6.6127PubMed
  • 4. Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: An updated systematic review. Drugs. 2009;69(13):1777–1798. http://dx.doi.org/10.2165/11317010-000000000-00000ArticlePubMed
  • 5. Bushra R, Alsam N, Khan AY. Food-drug interactions. Oman Med J. 2011;26(2):77–83. http://dx.doi.org/10.5001/omj.2011.21ArticlePubMedPMC
  • 6. Abbaszadeh A, Eskandari M, Borhani F. Changing the care process: A new concept in Iranian rural health care. Asian Nurs Res (Korean Soc Nurs Sci). 2013;7(1):38–43.ArticlePubMed
  • 7. Schnipper JL, Linder JA, Palchuk MB, Yu DT, McColgan KE, Volk LA, et al. Effects of documentation-based decision support on chronic disease management. Am J Manag Care. 2010;16:12 Suppl HIT. SP72–SP81.PubMed
  • 8. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765. http://dx.doi.org/10.1136/bmj.38398.500764.8FArticlePubMedPMC
  • 9. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. JAMA. 2005;293(10):1223–1238. http://dx.doi.org/10.1001/jama.293.10.1223ArticlePubMed
  • 10. Jani YH, Barber N, Wong IC. Characteristics of clinical decision support alert overrides in an electronic prescribing system at a tertiary care paediatric hospital. Int J Pharm Pract. 2011;19(5):363–366. http://dx.doi.org/10.1111/j.2042-7174.2011.00132.xArticlePubMedPDF
  • 11. Pearson SA, Moxey A, Robertson J, Hains I, Williamson M, Reeve J, et al. Do computerised clinical decision support systems for prescribing change practice? A systematic review of the literature (1990-2007). BMC Health Serv Res. 2009;9:154. http://dx.doi.org/10.1186/1472-6963-9-154ArticlePubMedPMCPDF
  • 12. Wyatt J, Spiegelhalter D. Field trials of medical decision-aids: Potential problems and solutions. Proc Annu Symp Comput Appl Med Care. 1991;3–7.
  • 13. Weiss SM, Kulikowski CA, Safir A. A model-based consultation system for the long-term management of glaucoma. The International Joint Conferences on Artificial Intelligence. Proceedings of the 5th international joint conference on artificial intelligence: Volume 2. San Francisco, CA: Morgan Kaufmann Publishers Inc.; 1977. p. 826–832.
  • 14. Taylor P. From patient data to medical knowledge: The principles and practice of health informatics. London, UK: Blackwell BMJ Books; 2006.
  • 15. Buchanan BG, Shortliffe EH. Rule-based expert systems: The MYCIN experiments of the stanford heuristic programming project. Reading, MA: Addison-Wesley Publishing Company; 1984.
  • 16. Cobos A, Vilaseca J, Asenjo C, Pedro-Botet J, Sanchez E, Val A, et al. Cost effectiveness of a clinical decision support system based on the recommendations of the european society of cardiology and other societies for the management of hypercholesterolemia: Report of a cluster-randomized trial. Dis Manag Health Out. 2005;13(6):421–432. http://dx.doi.org/10.2165/00115677-200513060-00007
  • 17. Bassa A, del Val M, Cobos A, Torremade E, Bergonon S, Crespo C, et al. Impact of a clinical decision support system on the management of patients with hypercholesterolemia in the primary healthcare setting. Dis Manag Health Out. 2005;13(1):65–72. http://dx.doi.org/10.2165/00115677-200513010-00007Article
  • 18. Roberts LL, Ward MM, Brokel JM, Wakefield DS, Crandall DK, Conlon P. Impact of health information technology on detection of potential adverse drug events at the ordering stage. Am J Health Syst Pharm. 2010;67(21):1838–1846. http://dx.doi.org/10.2146/ajhp090637ArticlePubMed
  • 19. Schnipper JL, Linder JA, Palchuk MB, Yu DT, McColgan KE, Volk LA, et al. Effects of documentation-based decision support on chronic disease management. Am J Manag Care. 2010;16:12 Suppl HIT. SP72–SP81.PubMed
  • 20. Abas HI, Yusof MM, Moah SAM. The application of ontology in a clinical decision support system for acute postoperative pain management. In: 2011 International Conference on Semantic Technology and Information Retrieval; 2011 June 28-29; Putrajaya, MY. IEEE.
  • 21. Kuziemsky CE, Lau F. A four stage approach for ontology-based health information system design. Artif Intell Med. 2010;50(3):133–148. http://dx.doi.org/10.1016/j.artmed.2010.04.012ArticlePubMed
  • 22. Mahmud FB, Yusof NM, Shahrul AN. Ontological based clinical decision support system (CDSS) for weaning ventilator in intensive care unit (ICU). In: IEEE International Conference on Electrical Engineering and Informatics (ICEEI); 2011 July 17-19; Bandung, Indonesia. IEEE; http://dx.doi.org/10.1109/ICEEI.2011.6021506
  • 23. KIMS. Interaction [Internet]. Seoul, KIMS OnLine. 2010;cited 2012 December 10. Available from: http://www.kimsonline.co.kr/
  • 24. KOICD. KCD tree. Daejeon, Frugal Solution. 2013;cited 2012 December 10. Available from: http://www.koicd.kr/
  • 25. Park JE, Chung KA, Cho H, Kim HS. Construction of the nursing diagnosis ontology in obstetric and gynecologic nursing unit using nursing process and SNOMED CT. Korean J Women Health Nurs. 2013;19(1):1–12. http://dx.doi.org/10.4069/kjwhn.2013.19.1.1ArticlePubMed
  • 26. Protégé3.4.7 [Online Database]. Stanford University. 2013;cited December 7. Available from: http://www.stanford.edu/
  • 27. Rho SG, Park JS. Ontology. 3rd ed. Seoul: Good's Toy; 2009.
  • 28. The Florida Institute for Human and Machine Cognition. CmapTools [Internet]. Pensacola, FL, Author. 2003;cited 2013 December 17. Available from: http://cmap.ihmc.us/
  • 29. The International Health Terminology Standards Development Organisation. SNOMED CT [Internet]. Copenhagen, DK, Author. 2010;cited 2013 December 17. Available from: http://www.ihtsdo.org/snomed-ct
  • 30. Kehagias DD, Papadimitriou I, Hois J, Tzovaras D, Bateman J. A methodological approach for ontology evaluation and refinement. In: ASK-IT International Conference; 2008 June 26-27; Nuremberg, De.
Figure 1
The research framework and system architecture.
jkan-44-294-g001.jpg
Figure 2
Entity relationship diagram (ERD).
jkan-44-294-g002.jpg
Figure 3
OWL representation of IBADDM ontology.
jkan-44-294-g003.jpg
Figure 4
Screenshot of ontology and JAVA prototype application.
jkan-44-294-g004.jpg
Table 1
Scores of Evaluation on the Representation (N=7)
jkan-44-294-i001.jpg

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  

      • Cite
        CITE
        export Copy Download
        Close
        Download Citation
        Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

        Format:
        • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
        • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
        Include:
        • Citation for the content below
        Implementation of Ontology-based Clinical Decision Support System for Management of Interactions Between Antihypertensive Drugs and Diet
        J Korean Acad Nurs. 2014;44(3):294-304.   Published online June 30, 2014
        Close
      • XML DownloadXML Download
      Figure
      • 0
      • 1
      • 2
      • 3
      We recommend
      Implementation of Ontology-based Clinical Decision Support System for Management of Interactions Between Antihypertensive Drugs and Diet
      Image Image Image Image
      Figure 1 The research framework and system architecture.
      Figure 2 Entity relationship diagram (ERD).
      Figure 3 OWL representation of IBADDM ontology.
      Figure 4 Screenshot of ontology and JAVA prototype application.
      Implementation of Ontology-based Clinical Decision Support System for Management of Interactions Between Antihypertensive Drugs and Diet

      Scores of Evaluation on the Representation (N=7)

      Table 1 Scores of Evaluation on the Representation (N=7)


      J Korean Acad Nurs : Journal of Korean Academy of Nursing
      Close layer
      TOP