This study aimed to explore and compare the knowledge structure of pain management nursing research, between Korea and other countries, applying a text network analysis.
321 Korean and 6,685 international study abstracts of pain management, published from 2004 to 2017, were collected. Keywords and meaningful morphemes from the abstracts were analyzed and refined, and their co-occurrence matrix was generated. Two networks of 140 and 424 keywords, respectively, of domestic and international studies were analyzed using NetMiner 4.3 software for degree centrality, closeness centrality, betweenness centrality, and eigenvector community analysis.
In both Korean and international studies, the most important, core-keywords were “pain,” “patient,” “pain management,” “registered nurses,” “care,” “cancer,” “need,” “analgesia,” “assessment,” and “surgery.” While some keywords like “education,” “knowledge,” and “patient-controlled analgesia” found to be important in Korean studies; “treatment,” “hospice palliative care,” and “children” were critical keywords in international studies. Three common sub-topic groups found in Korean and international studies were “pain and accompanying symptoms,” “target groups of pain management,” and “RNs’ performance of pain management.” It is only in recent years (2016~17), that keywords such as “performance,” “attitude,” “depression,” and “sleep” have become more important in Korean studies than, while keywords such as “assessment,” “intervention,” “analgesia,” and “chronic pain” have become important in international studies.
It is suggested that Korean pain-management researchers should expand their concerns to children and adolescents, the elderly, patients with chronic pain, patients in diverse healthcare settings, and patients’ use of opioid analgesia. Moreover, researchers need to approach pain-management with a quality of life perspective rather than a mere focus on individual symptoms.
This study aimed to identify and compare hospice care research topics between Korean and international nursing studies using text network analysis.
The study was conducted in four steps: 1) collecting abstracts of relevant journal articles, 2) extracting and cleaning keywords (semantic morphemes) from the abstracts, 3) developing co-occurrence matrices and text-networks of keywords, and 4) analyzing network-related measures including degree centrality, closeness centrality, betweenness centrality, and clustering using the NetMiner program. Abstracts from 347 Korean and 1,926 international studies for the period of 1998–2016 were analyzed.
Between Korean and international studies, six of the most important core keywords-“hospice,” “patient,” “death,” “RNs,” “care,” and “family”-were common, whereas “cancer” from Korean studies and “palliative care” from international studies ranked more highly. Keywords such as “attitude,” “spirituality,” “life,” “effect,” and “meaning” for Korean studies and “communication,” “treatment,” “USA,” and “doctor” for international studies uniquely emerged as core keywords in recent studies (2011~2016). Five subtopic groups each were identified from Korean and international studies. Two common subtopics were “hospice palliative care and volunteers” and “cancer patients.”
For a better quality of hospice care in Korea, it is recommended that nursing researchers focus on study topics of patients with non-cancer disease, children and family, communication, and pain and symptom management.
As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis.
The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword ‘comprehensive nursing care service’ using Python. A morphological analysis was performed using KoNLPy. Nodes on a ‘comprehensive nursing care service’ cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network.
A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, ‘nursing workforce’ and ‘nursing service’ were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were ‘National Health Insurance Service’ and ‘comprehensive nursing care service hospital.’ The nodes with the highest edge weight were ‘national health insurance,’ ‘wards without caregiver presence,’ and ‘caregiving costs.’ ‘National Health Insurance Service’ was highest in degree centrality.
This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies.